Radiometeor Forward-scattering Observations with a Portable System

Antonio Martínez Picar

Universidad Central de Venezuela Astronomical Society of Javornik

– Ljubljana, May 2008 –

- Each day, billions of meteoroids enter the Earth's atmosphere and form long trails of ionized particles (80 km < h < 120 km).</p>
- The free electrons are capable of "reflecting" radiowaves coming from the Earth's surface (< 1 s).
- Origin: 41% meteor streams have been linked with comets or asteroids; 16.7% don't have confirmed links; the rest are of **unknown** origin.
- Meteor activity study offers:
 - Meteoroids stream structure determination.
 - ► A "diagnostic tool" for study of the atmosphere .

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- Each day, billions of meteoroids enter the Earth's atmosphere and form long trails of ionized particle (80 km < h < 120 km).</p>
- The free electrons are capable of "reflecting" radiowaves coming from the Earth's surface (< 1 s).</p>
- Origin: 41% meteor streams have been linked with comets or asteroids; 16.7% don't have confirmed links; the rest are of **unknown** origin.
- Meteor activity study offers:
 - Meteoroids stream structure determination.
 - ► A "diagnostic tool" for study of the atmosphere .

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- Each day, billions of meteoroids enter the Earth's atmosphere and form long trails of ionized particle (80 km < h < 120 km).</p>
- The free electrons are capable of "reflecting" radiowaves coming from the Earth's surface (< 1 s)</p>
- Origin: 41% meteor streams have been linked with comets or asteroids; 16.7% don't have confirmed links; the rest are of **unknown** origin.
- Meteor activity study offers:
 - Meteoroids stream structure determination
 - ► A "diagnostic tool" for study of the atmosphere .

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- Each day, billions of meteoroids enter the Earth's atmosphere and form long trails of ionized particles (80 km < h < 120 km).</p>
- The free electrons are capable of "reflecting" radiowaves coming from the Earth's surface (< 1 s).</p>
- Origin: 41% meteor streams have been linked with comets or asteroids; 16.7% don't have confirmed links; the rest are of **unknown** origin.
- Meteor activity study offers:
 - Meteoroids stream structure determination.
 - A "diagnostic tool" for study of the atmosphere .

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- Each day, billions of meteoroids enter the Earth's atmosphere and form long trails of ionized particles (80 km < h < 120 km).</p>
- The free electrons are capable of "reflecting" radiowaves coming from the Earth's surface (< 1 s).</p>
- Origin: 41% meteor streams have been linked with comets or asteroids; 16.7% don't have confirmed links; the rest are of **unknown** origin.
- Meteor activity study offers:
 - Meteoroids stream structure determination.
 - A "diagnostic tool" for study of the atmosphere .

Any meteor stream modelling will require accurate measurements of meteoroid flux.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Historical Review

- At the end of 1920s radio reflections on "E Region" was identified.
- After the World War II, with the information obtained by unused radars transformed into radiotelescopes, the principles of radio meteor scattering were established.
- In the 1950s simple radar systems were set up and today we have various radio meteor detection facilities.
- Substantial efforts have also been done by scores of radio amateurs. With the *boom* of high quality data it seems that the theoretical work is somehow lagging behind ...

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Objectives

General Objective

Create a portable device for meteor activity registration that allows observation from different geographical positions.

The system should have the following features:

- Receive VHF (30 MHz < f < 100 MHz) signals using the forward-scatter method.
- The equipment must be easy to uninstall, move and setup on different geographic locations.
- Show the registered meteor activity in specified periods of time.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Backgroun

Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Objectives

General Objective

Create a portable device for meteor activity registration that allows observation from different geographical positions.

The system should have the following features:

- Receive VHF (30 MHz < f < 100 MHz) signals using the forward-scatter method.
- The equipment must be easy to uninstall, move and setup on different geographic locations.
- Show the registered meteor activity in specified periods of time.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Backgroun

Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Meteor Observations Methods

- Optical:
 - Visual.
 - Photography.
 - Photoelectrical.
 - Video (CCD and Light Intesifiers).
- Radio:
 - Backscatter.
 - Forward–scatter.

Radio observation allows continuous registration without any interference of atmopheric variables, neither field restrictions which limit optical methods.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Background

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Meteor Observations Methods

- Optical:
 - Visual.
 - Photography.
 - Photoelectrical.
 - Video (CCD and Light Intesifiers).
- Radio:
 - Backscatter.
 - Forward–scatter.

Radio observation allows continuous registration without any interference of atmopheric variables, neither field restrictions which limit optical methods.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Meteor Origin Meteoroid Ablation and Trail Ionization

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Ohiantina

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljan Storage

Conclusions

Scattering off Meteor Trails Backscatter off underdense trails

- The free electron density is assumed as "low".
- The radiowaves can completely penetrate the trail (without large attenuation).
- Each e⁻ receive the electric field individually and, collectively, they scatter the wave coherently.

The received signal amplitude will behave as...

$$A_{\rm u}(t) = A_{\rm u,max} e^{-\frac{t}{\tau}}$$

where

$$\tau = \frac{\lambda^2}{16\pi^2 D_a}$$

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana

Storage

Conclusions

Scattering off Meteor Trails Backscatter off overdense trails

- The free electron density is assumed as "high".
- The radiowaves will not be able to penetrate the trail.
- The core of the trail will behave as plasma (similar to a metallic cylinder with radius r_c).

The received signal amplitude will behave as...

$$A_{\rm o}(t) = A_{\rm o,max} \sqrt{\frac{r_{\rm c}(t)}{r_{\rm c,max}}}$$

where

$$r_{\rm c}(t) = \sqrt{\left(r_0^2 + 4D_{\rm a}t\right) \ln \frac{\alpha \lambda^2 r_e}{\pi^2 (r_0^2 + 4D_{\rm a}t)}}$$

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Experimental Method

System Description Processing Configuration

Results

- Caracas Ljubljana
- Storage

Conclusions

Scattering off Meteor Trails Forward-Scatter

The geometry of this situation includes the influence of half forward-scatter angle (ϕ) on the received signal level...

• Underdense
$$\Rightarrow \tau = \frac{\lambda^2 \sec^2 \phi}{16\pi^2 D_a}$$

• Overdense
$$\Rightarrow r_{c}(t) = \sqrt{(r_{0}^{2} + 4D_{a}t) \cdot \ln \frac{\alpha(\lambda \sec \phi)^{2}r_{e}}{\pi^{2}(r_{0}^{2} + 4D_{a}t)}}$$

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

System Description Basics

Basic System Diagram

Practical advantage

Using *forward-scatter* we can "hear" signals coming from broadcast transmitters and focus exclusively on receiver set-up.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Backgroun

Objectives

Theoretical Fundamentals

Trail Formation

Forward Scatte

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

System Description Preliminar Survey

Tx Location	Amazonas	Anzoátegui	Bolívar	Lara	Mérida	Táchira	Zulia
$A_{\rm u,max}$ (μ V)	0.48	3.10	0.89	6.39	0.93	1.44	2.18
$A_{o, max}$ (μ V)	0.80	5.89	1.50	12.04	1.56	2.38	3.65

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Background

Initial Rx Location: Caracas.

Frequency: Luminance Carrier TV Ch 6 VHF (NTSC) - 83 25 MHz -

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljan

Storage

Conclusions

System Description Receiver Equipment

Features

- Model: IC-PCR1500 (*ICOM*, *Inc.*).
- Type: PC Radio (10 kHz – 3.3 GHz).
- Sensibility: 0.4 μV (SNR=10 dB @ "CW").
- Interface: USB.
- Software: Propietary (only under MS Windows).
- Antenna: Simple Dipole $(z = 50 \Omega)$.
- Dimensions: 146 × 41 × 206 mm.
- Weight: 1.2 kg.

Minimum requirements for the control PC...

- Processor Intel Pentium III 450 MHz.
- Interface USB 1.1 ó 2.2
- Hard Drive with 50 MB free.
- RAM Memory of 128 MB.
- Display of 1024 × 768 px resolution.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction Background

Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

System Description

Adquisition and Storage

Hardware

- Type: Portable PC.
- Model: 8710p (Hewlett-Packard).
- Processor: 2.2 GHz.
- RAM Memory: 2 GB.
- Hard Drive: 160 GB.
- Dimensions: 394 × 33 × 275 mm.
- Weight: 3.375 kg.

Total dimensions of the system

 $4808.66 \text{ cm}^3 - 4.575 \text{ kg}$

Software

- Aplication: Spectrum Lab vers. 2.4 (BÜSCHER, 2007).
- Type: Freeware.
- Audio signal FFT analysis.
- Pre-defined functions.
- Script management

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background

Objectives

Theoretical Fundamentals

Trail Formation

Forward-Scatte

Experimental Method

System Description Processing Configuration

Result

Caracas Ljubljana Storage

Conclusions

System Description

Adquisition and Storage

Hardware

- Type: Portable PC.
- Model: 8710p (Hewlett-Packard).
- Processor: 2.2 GHz.
- RAM Memory: 2 GB.
- Hard Drive: 160 GB.
- Dimensions: 394 × 33 × 275 mm.
- Weight: 3.375 kg.

Software

- Aplication: Spectrum Lab vers. 2.4 (BÜSCHER, 2007).
- Type: Freeware.
- Audio signal FFT analysis.
- Pre-defined functions.
- Script management.

Main window of Spectrum Lab

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Final Remarks

Total dimensions of the system 4808.66 cm³ — 4.575 kg

System Description

Adquisition and Storage

Hardware

- Type: Portable PC.
- Model: 8710p (Hewlett-Packard).
- Processor: 2.2 GHz.
- RAM Memory: 2 GB.
- Hard Drive: 160 GB.
- Dimensions: 394 × 33 × 275 mm.
- Weight: 3.375 kg.

Total dimensions of the system 4808.66 cm³ — 4.575 kg

Software

- Aplication: Spectrum Lab vers. 2.4 (BÜSCHER, 2007).
- Type: Freeware.
- Audio signal FFT analysis.
- Pre-defined functions.
- Script management.

Main window of Spectrum Lab

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Detection Strategy

 Flux density Q(m₀) determination for a meteoroid stream is based on meteor reflection counts.

Selection criterium: P_{obs} > P_{th}, where...

- (a) $P_{th} = P_r + n \times \sigma_{P_r}$
- (b) $P_{th} = \overline{P_r} + n \times \sigma_{\overline{P_r}}$

(c)
$$P_{th} = n \times \overline{P_r}$$

Portable System for Meteor Activity Recording

Antonio Martínez Picar

undamenta

Backscatter

orward-Scatter

Experimental Method

System Description

Processing

Configuration

Results

Caracas

Ljubljan

Storage

Conclusions

Sporadic Activity Determination

N sporadic + stream meteors sporadic background 0 6 12 18 24 t(h)

In order to obtain the meteor activity of a selected stream it is necessary to substract the **background sporadic activity**.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction Background

Objectives

Theoretical Fundamentals

Trail Formation

orward-Scatter

Experimental Method

System Description

Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Observing Location: Caracas, Venezuela Direct Signal Reception

- Latitude: 10° 30′ 33″ N
- Longitude: 66° 53′ 40″ W
- $f_L = 83.25 \text{ MHz}$
- Estimation: Irregular Terrain Model.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing

Configuration

Results

Caraca

Ljubljan

Storage

Conclusions

Transmitter	Amazonas	Anzoátegui	Bolívar	Lara	Mérida	Táchira	Zulia
$A_{\rm R \ 50\%} \ (\mu V)$	0.04	0.25	0.13	0.42	0.00	0.00	0.10
$A_{\rm R \ 90\%} \ (\mu V)$	0.00	0.09	0.07	0.19	0.00	0.00	0.06
Azimuth (°)	189	100	126	257	245	245	273

Observing Location: Caracas, Venezuela Antenna and Storage

- Antenna set-up:
 5 cm from the roof and at 30° angle from the vertical
 ⇒ "real ground plane".
- Main lobe aiming at $\approx 260^{\circ}$.
- ▶ Reception Mode: CW.
- Filter BW: 2.8 kHz.
- Register method:
 - Original audio (continuous).
 - Conditional (moving threshold).

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing

Configuration

Results

Caracas Ljubljana Storage

Conclusions

Observing Location: Ljubljana, Eslovenia Direct Signal Reception

Transmitter	Ceske	Pécs	Mte. Penice
$A_{ m R50\%}~(\mu V)$	0.42	0.39	0.08
$A_{ m R90\%}~(\mu V)$	0.13	0.12	0.04
Azimuth (°)	357	87	253

- Latitude: 46° 02′ 18″ N
- Longitude: 14° 29′ 06″ E
- $f_L = 62.25 \text{ MHz}$
- Estimation: Irregular Terrain Model.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Method

System Description Processing

Configuration

Results

Caracas

Storage

Conclusions

Observing Location: Ljubljana, Eslovenia Antenna and Storage

► Antenna Set-Up: 5 cm from the wall and at 22.5° angle from wall's normal ⇒ "real ground plane".

- Main lobe aiming at $\approx 250^{\circ}$.
- Reception mode: CW.
- Filter BW: 2.8 kHz.
- Register Method:
 - Conditional (moving and fixed threshold).
 - Images (plotter).
 - Archives (rates).

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction Background

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing

Configuration

Results

Caracas Ljubljana Storage

Conclusions

Observations

Caracas

- Lapse: 16/10/07 to 08/11/07.
- Moving threshold detection.
- Audio (11000 sps @ 16 bit).

Ljubljana

- Lapse: 20/12/07 to 10/01/08.
- Multiple criteria detection.
- Audio (5512 sps @ 16 bit).

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Observations from Caracas Meteor Reflection Profiles

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana

Storage

Conclusions

Observations from Caracas Orionids Activity in 2007

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Theoretical Fundamentals Trail Formation Backscatter Forward-Scatter Experimental Method System Description Processing

Configuration

Results

Caracas Ljubljana

Conclusions

Observations from Ljubljana Meteor Reflection Profiles

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Observations from Ljubljana Spectrogram and Plotter Windows

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljana

Storag

Conclusions

Final Remarks

Spectrogram (Cascade Graphic)

Observations from Ljubljana Detection Criteria

Between December 22 and 30 2007 the system registered the **Maximum Noise Level** (RM) for each observation hour...

$$\overline{\text{RM}} = 24.85 \,\mu\text{V}$$

$$\sigma(\overline{\text{RM}}) = 8.27 \,\mu\text{V}$$

$$\Downarrow$$

$$Pth_3 = -43.07 \,\text{dBm}$$

$$Pth_4 = -41.73 \,\text{dBm}$$

 $P\mathrm{th}_5 ~=~ -35.10~\mathrm{dBm}$

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Liubliana Storage

Einel Demerly

Observations from Ljubljana Quadrantids Activity in 2008

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Background

Objectives

Theoretical Fundamentals

Trail Formation

Forward-Scatte

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljana Storage

Conclusions

Observations from Ljubljana Quadrantids Activity in 2008

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction Background Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljana Storage

Conclusions

Observations from Ljubljana Storage Strategy

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Background

Objectives

Theoretical Fundamentals

Trail Formation

Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas

Ljubljana

Storage

Conclusions

Final Remarks

Storage Strategy	Format	Specifications	Information Rate (MB/h)	
Continuous audio	WAVE	11000 sps	75.71	
Conditional audio	WAVE	11000 sps	31.44	
Conditional audio	WAVE	5512 sps	14.94	
Plotter images	JPEG	$800 imes 600 \ \mathrm{px}$	47.55	
Plotter images	JPEG	$640 imes 480 \ \text{px}$	16.75	

Information rates according to the storage strategy estimated on mean size of the files and mean activity rates.

- We established a system for meteor detection using the forward-scatter method in the VHF (30 to 100 MHz) frequency range.
- The system is **portable** as specified in the requirements.
- We recommend registration method that requires the minimum hard disk capacity.
- The activity curves of the meteor showers observed with the system show substantial agreement with the results of other reseach.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction

Background

Theoretical Fundamentals

Trail Formation Backscatter

orward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- We established a system for meteor detection using the forward-scatter method in the VHF (30 to 100 MHz) frequency range.
- The system is portable as specified in the requirements.
- We recommend registration method that requires the minimum hard disk capacity.
- The activity curves of the meteor showers observed with the system show substantial agreement with the results of other reseach.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Backgroun

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Aethod

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- We established a system for meteor detection using the forward-scatter method in the VHF (30 to 100 MHz) frequency range.
- The system is portable as specified in the requirements.
- We recommend registration method that requires the minimum hard disk capacity.
- The activity curves of the meteor showers observed with the system show substantial agreement with the results of other reseach.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Aethod

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

- We established a system for meteor detection using the forward-scatter method in the VHF (30 to 100 MHz) frequency range.
- The system is portable as specified in the requirements.
- We recommend registration method that requires the minimum hard disk capacity.
- The activity curves of the meteor showers observed with the system show substantial agreement with the results of other reseach.

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Experimental Aethod

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

HVALA!

Portable System for Meteor Activity Recording

Antonio Martínez Picar

ntroduction Background

Objectives

Theoretical Fundamentals

Trail Formation Backscatter

Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljana Storage

Conclusions

Further Reading

- VERBEECK, C. and WISLEZ, J.-M. 2006. Proceedings of the Radio Meteor School, Oostmalle, Belgium 10-14 September 2005, International Meteor Organization.
- MCKINLEY, D.W.R. 1961. Meteor science and engineering, McGraw-Hill, New York.
- BÜSCHER, W. 2008. DL4YHF's Amateur Radio Software: Audio Spectrum Analyzer ("Spectrum Lab"), Available in: <http://freenet-homepage.de/dl4yhf/spectra1.html>

Portable System for Meteor Activity Recording

Antonio Martínez Picar

Introduction Background Objectives

Theoretical Fundamentals

Trail Formation Backscatter Forward-Scatter

Experimental Method

System Description Processing Configuration

Results

Caracas Ljubljan Storage

Conclusions